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1. (a)  Express 
)23)(13(

3

 rr
 in partial fractions. 

(2) 

(b)  Using your answer to part (a) and the method of differences, show that 

 


 

n

r rr1 )23)(13(

3
 = 

)( 232

3

n

n
. 

(3) 

(c)  Evaluate 
 

1000

100 )23)(13(

3

r rr
, giving your answer to 3 significant figures. 

(2) 

 

 

2. The displacement x metres of a particle at time t seconds is given by the differential equation 

 

2

2

d

d

t

x
 + x + cos x = 0. 

 

When t = 0, x = 0 and 
t

x

d

d
 = 

2

1
. 

 

Find a Taylor series solution for x in ascending powers of t, up to and including the term in t
3
. 

(5) 

 

 

3.  (a)  Find the set of values of x for which 

 

x + 4 > 
3

2

x
. 

(6) 

(b)  Deduce, or otherwise find, the values of x for which 

 

x + 4 > 
3

2

x
. 

(1) 
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4.            z = −8 + (8√3)i 

 

(a)  Find the modulus of z and the argument of z. 

(3) 

 

Using de Moivre’s theorem, 

 

(b)  find z
3
, 

(2) 

(c)  find the values of w such that w
4
 = z, giving your answers in the form a + ib, where a, b ℝ. 

(5) 

 

5.  

 
 

Figure 1 

 

Figure 1 shows the curves given by the polar equations 

 

    r = 2,    0  θ  
2


, 

 

      and  r = 1.5 + sin 3θ,  0  θ  
2


. 

 

(a)  Find the coordinates of the points where the curves intersect. 

(3) 

 

The region S, between the curves, for which r > 2 and for which r < (1.5 + sin 3θ), is shown 

shaded in Figure 1. 

 

(b)  Find, by integration, the area of the shaded region S, giving your answer in the form aπ + b√3, 

where a and b are simplified fractions. 

(7) 
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6. A complex number z is represented by the point P in the Argand diagram. 

 

(a)  Given that z − 6 = z, sketch the locus of P. 

(2) 

(b)  Find the complex numbers z which satisfy both z − 6 = z and z − 3− 4i = 5. 

(3) 

 

The transformation T from the z-plane to the w-plane is given by w=
z

30
. 

 

(c)  Show that T maps z − 6 = z onto a circle in the w-plane and give the cartesian equation 

of this circle. 

(5) 

 

7. (a)  Show that the transformation z = 2

1

y  transforms the differential equation 

 

x

y

d

d
 – 4y tan x = 2

1

2y    (I) 

 

into the differential equation 

 

x

z

d

d
 – 2z tan x = 1  (II) 

(5) 

(b)  Solve the differential equation (II) to find z as a function of x. 

(6) 

(c)  Hence obtain the general solution of the differential equation (I). 

(1) 
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8.  (a)  Find the value of λ for which y = λx sin 5x is a particular integral of the differential equation 

 

2

2

d

d

x

y
 + 25y = 3 cos 5x. 

 (4) 

(b)  Using your answer to part (a), find the general solution of the differential equation 

 

2

2

d

d

x

y
 + 25y = 3 cos 5x. 

 (3) 

 

Given that at x = 0, y = 0 and 
x

y

d

d
 = 5, 

 

(c)  find the particular solution of this differential equation, giving your solution in the form 

y = f(x). 

(5) 

(d)  Sketch the curve with equation y = f(x) for 0  x  π. 

(2) 

TOTAL FOR PAPER: 75 MARKS 

END 



EDEXCEL FURTHER PURE MATHEMATICS FP2 (6668) – JUNE 2010      FINAL MARK SCHEME 

 

 1 

 
 
Question 
Number 

 
                                                 Scheme 

 
Marks 

 
1(a) 

 

1 1

3 1 3 2r r


 
 

 

 

 

M1 A1 

(2) 

 
     (b) 

 

1

3

(3 1)(3 2)

n

r r r  
 = 

1 1 1 1 1 1 1 1
...

2 5 5 8 8 11 3 1 3 2n n
      

 
 

 

 

 

 

M1 A1ft 

 1 1 3

2 3 2 2(3 2)

n

n n
  

 
  *  

A1 

(3) 

      
     (c) 

 

Sum = f(1000) – f(99) 

        
3000 297

0.00301
6004 598

      or 33.01 10  

 

 

M1 

A1 

(2) 

 

7 

 
2 

 

f ( ) cos , f (0) -1t x x      

 

B1 

 d
f ( ) ( 1 sin ) , f (0) 0.5

d

x
t x

t
       

 

M1A1 

 2 3

f ( ) f (0) f (0) f (0) f (0) ...
2 3!

t t
t t         

 

 

         2 31
12

0.5 0.5 ...t t t     M1 A1 

5 
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Question 
Number 

 
                                                     Scheme 

 
Marks 

 
3(a) 

 
2( 4)( 3) 2( 3) 0x x x     ,  2( 3)( 7 10) 0x x x     so ( 2)( 3)( 5) 0x x x     

or alternative method including calculator 

 

M1 

 Finds critical values –2 and -5 

 

 

A1 A1 

 Establishes x > -2 A1ft 

 Finds and uses  critical value –3 to give –5 < x < -3 M1A1 

(6) 

 
(b) 

 

x  > -2 
 
 
 

 

B1ft 

(1) 

 

7 

 
4(a) 

 

Modulus = 16 

 

    B1 

 
 

Argument = 
2

arctan( 3)
3


   

 

   M1A1 

(3) 

   
(b) 

 

3 3 3 32 2
16 (cos( ) isin( )) 16 (cos 2 isin2 )

3 3
z

 
     =4096 or 316  

 

M1 A1 

 (2) 

 

 
(c) 

 

x

y

d

d

 
1 1
4 4

2 2
16 (cos( ) isin( )) 2(cos isin )

3 3 6 6
w

      
      

   
  3 i   

 

OR  1 3i   OR 3 i  OR 1 3i  

 

   

 M1 A1ft 

 

 

M1A2(1,0) 

(5) 

 

10 
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Question 
Number 

 
                                                 Scheme 

 
Marks 

 
5(a) 

 

1.5 sin3 2           sin3 0.5     
5

3  or 
6 6

 


 
   

 
,   

 

 

M1 A1,  

 

 
 

and 
5

 or 
18 18

 
   

 

A1 

(3) 

 
    

(b) 

 

Area = 

5
18

18

21
2

(1.5 sin 3 ) d





 
 
 
  
 ,  - 21

2
9
   

 

 

M1,  M1 

 

 

        = x

y

d

d

5
18

18

1 1
2 2

(2.25 3sin 3 (1 cos6 ))d





  
 
   
  
 - 21

2
9
   

 

 

M1 

 

 

 
 

         = 

5

18
1 1
2 2

18

1
(2.25 cos3 ( sin 6 ))

6




   

 
   

 
 - 21

2
9
   

M1 A1 

 

 

 
 

   
13 3 5

24 36


   

 

 

M1 A1 

(7) 

 

10 
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Question 
Number 

 
                                                 Scheme 

 
Marks 

 
6(a) 

 

Imaginary Axis 

 

 

 

 

 

 

 Real axis 

                                                                                                       Vertical Straight line 

                                                                                                    Through 3 on real axis 

 

 

 

 

 

 

 

 

 

B1 

B1 

 

 

(2) 

      
(b) 

 

These are points where line x = 3 meets the circle centre (3, 4) with radius 5. 

 

 

M1 

 
 The complex numbers are 3 + 9i and 3 – i. A1 A1 

(3) 

 
(c) 

 
30 306 6
w w

z z      

 

M1 

 
 30 6 30w       5 5w    M1 A1 

 
 This is a circle with Cartesian equation 2 2( 5) 25u v    

 

 

 

 

M1 A1  

(5) 

 

10 

6 

Re(z) = 3 

 0 
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Question 
Number 

 
                                                 Scheme 

 
Marks 

 
7(a) 

 

d d d
.

d d d

y y z

x z x
  and 

d
2

d

y
z

z
   so 

d d
2 .

d d

y z
z

x x
  

 

 

M1 M1 A1 

 
  

Substituting to get 2d
2 . 4 tan 2

d

z
z z x z

x
   and thus  

d
2 tan 1

d

z
z x

x
     

 

 

M1 A1 

(5) 

 
(b) 

 

  
2tan d

I.F. e
x x   =   2lncose x    = 2cos x  

 

 

M1 A1 

 

 
 2 2d

cos cos
d

z x x
x

   2 2cos cosz x xdx    

 

 

M1 

 

                   2cosz x        = 1
2
(cos2 1)x dx 1 1

4 2
sin 2x x  +c  

M1 A1 
 2 21 1

2 2
tan sec secz x x x c x     

 

 

A1 

(6) 

      
(c) 

  
2 2 21 1

2 2
( tan sec sec )y x x x c x     

 

B1ft 

(1) 

 

12 
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Question 
Number 

 
                                                 Scheme 

 
Marks 

 

8(a) 

 
Differentiate twice and obtaining  

d
sin5 5 cos5

d

y
x x x

x
    and 

2

2

d
10 cos5 25 sin5

d

y
x x x

x
    

 
 
 
M1 A1 

 

 
Substitute to give 

3

10
   

 

M1 A1 

(4) 

 

(b) 

 

Complementary function is cos5 sin5y A x B x   or 
5i 5ie ex xP Q   

 
M1 A1 

 

 
So general solution is cos5 sin5y A x B x  +

3
sin 5

10
x x  or in exponential form 

A1ft 

(3) 

 

(c) 

 

y= 0 when x = 0  means A = 0 

 

 

B1 

 

 d
5 cos5

d

y
B x

x


3 3
sin5 cos5

10 2
x x x   and at x = 0 

d
5

d

y

x
  and so 5 = 5A  

 

M1 M1 

  

So B = 1 

 

A1 

 

 
So sin5y x +

3
sin 5

10
x x  

 

 

A1 

(5) 

 

(d) 

 

 

 
 
 
 
B1 

 

 

 

B1 

 

(2) 

 

 

14 

 

"Sinusoidal" through O 

amplitude becoming larger 

 

Crosses x axis at  

2 3 4
, , ,

5 5 5 5

   
 


